
Spectector: Principled detection
of speculative information flows

Marco Guarnieri
IMDEA Software Institute

!1

Supported by Intel Strategic Research Alliance (ISRA)  
“Information Flow Tracking across the Hardware-Software Boundary”

Joint work with
José F. Morales, Andrés Sánchez @ IMDEA Software Institute
Boris Köpf @ Microsoft Research
Jan Reineke @ Saarland University To appear at IEEE Security & Privacy 2020

!2
P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019

!2

Exploits speculative execution

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019

!2

Exploits speculative execution

Almost all modern CPUs
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019

Countermeasures

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

	  
	 Short and Mid Term: Software countermeasures

Compiler-level countermeasures
• Example: insert LFENCE to selectively stop speculative execution

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

	  
	 Short and Mid Term: Software countermeasures

Compiler-level countermeasures
• Example: insert LFENCE to selectively stop speculative execution

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

PR
OBL

EM

SOL
VE

D ?

!4

Compiler-level countermeasures

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

!4

Compiler-level countermeasures

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

!4

Compiler-level countermeasures

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

!4

Compiler-level countermeasures

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

!4

Compiler-level countermeasures

Bottom line: No guarantees!

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

Contributions

!5

Contributions

!5

1. Semantic notion of security  
 against speculative execution attacks

Contributions

!5

1. Semantic notion of security  
 against speculative execution attacks

2. Analysis to detect vulnerability or prove security

Outline
1. Speculative execution 101

2. Speculative non-interference

3. Detecting speculative leaks

4. Spectector + Case studies
!6

Speculative execution + branch prediction

!7

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

Branch predictor

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

!7

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Speculative non-interference

!8

Speculative non-interference

!9

Speculative non-interference

!9

Program P is speculatively non-interferent if

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =

!9

Informally:

Program P is speculatively non-interferent if

How to capture leakage?

!10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

How to capture leakage?

!10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Model program’s behavior

How to capture leakage?

!10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

!11

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

!12

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

start
pc L1

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

load A+x

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

load B+A[x]

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

rollback
pc END

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

!13

Speculative non-interference

!14

Formally!

Speculative non-interference

!14

Program P is speculatively non-interferent for prediction oracle O if

Formally!

Speculative non-interference

!14

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:

Formally!

Speculative non-interference

!14

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Formally!

Speculative non-interference

!14

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

Reasoning about arbitrary oracles

!15

Reasoning about arbitrary oracles

!15

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Reasoning about arbitrary oracles

!15

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

Reasoning about arbitrary oracles

!15

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)

Detecting speculative leaks

!16

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

!17

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

!17

Symbolic trace: path condition +
observations along the symbolic path

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

!18

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

!19

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

!19

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

!19

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ
pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

Equivalent
wrt policy

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

=
s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

= ≠

s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

!20

Spectector + Case studies

!21

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

!22

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

!22

More details
• Built in Prolog  

• Z3 for symbolic execution and leak detection

Case study: compiler mitigations
Target:

• 15 variants of Spectre V1 by Paul Kocher*

• Compiled with Microsoft Visual C++, Intel ICC, and Clang
with different mitigations and optimization levels

• 240 assembly programs of up to 200 instructions each

How:

• Use Spectector to prove security or detect leaks
!23

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results No countermeasures

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Automated insertion of
fences

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Speculative load
hardening

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!24

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

Summary
• Leaks in all unprotected programs 

(except example #08 with optimizations)

• Confirm all vulnerabilities in VCC pointed out by Paul Kocher

• Programs with fences (ICC and Clang) are secure

• Unnecessary fences

• Programs with SLH are secure except #10 and #15

!24

Case study: scalability

!25

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

Case study: scalability

!25

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

}Trade-offs affect analysis
soundness and completeness

Results

!26

Results

!26

• SNI 10x-100x faster
• 20.2% traces

Results

!26

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

Results

!26

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

Results

!26

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Results

!26

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Checking SNI scales roughly as well as
discovering new paths in symbolic execution

Conclusion

!27

!28

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

!28

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

https://spectector.github.io

marco.guarnieri@imdea.org

@MarcoGuarnier1

Spectector

