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Exploits speculative execution

Almost all modern CPUs 
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Compiler-level countermeasures

Bottom line: No guarantees!

“compiler […] produces unsafe code when the static 
analyzer is unable to determine whether a code pattern 
will be exploitable”

"there is no guarantee that all possible instances of 

[Spectre] will be instrumented”
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1. Semantic notion of security  
                    against speculative execution attacks

2. Analysis to detect vulnerability or prove security



Outline
1. Speculative execution 101 

2. Speculative non-interference 

3. Detecting speculative leaks 

4. Spectector + Case studies
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Size of array A

Branch predictor

Prediction based on branch 
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state
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Speculative non-interference

Leakage of P in  
speculative 

execution

Leakage of P in  
non-speculative 

execution =
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Informally:

Program P is speculatively non-interferent if
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Non-speculative 
semantics

Speculative  
semantics

+ Attacker 
model

Capture attacker’s 
observational power

Model program’s behavior
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Always-mispredict 
speculative semantics 

Mispredict all branch 
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case 
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies 

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)
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Spectector
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More details 
• Built in                    Prolog  

• Z3 for symbolic execution and leak detection 



Case study: compiler mitigations
Target: 

• 15 variants of Spectre V1 by Paul Kocher* 

• Compiled with Microsoft Visual C++, Intel ICC, and Clang 
with different mitigations and optimization levels 

• 240 assembly programs of up to 200 instructions each 

How: 

• Use Spectector to prove security or detect leaks
!23

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html



Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH
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Checking SNI scales roughly as well as 
discovering new paths in symbolic execution 
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Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.
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mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
mov  rax, A[rcx] 
mov  rax, B[rax]

    rax <- A_size 
    rcx <- x 
    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

x64 to μASM

Symbolic 
execution

Check for speculative leaks

L1:
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Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’: 
Pnon-spec(s) = Pnon-spec(s’)    	             

Pspec(s,O) = Pspec(s’,O)⇒

Formally!
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