# Spectector: Principled detection of speculative information flows

Marco Guarnieri IMDEA Software Institute

Supported by Intel Strategic Research Alliance (ISRA) "Information Flow Tracking across the Hardware-Software Boundary"

Joint work with

José F. Morales, Andrés Sánchez @ IMDEA Software Institute Boris Köpf @ Microsoft Research Jan Reineke @ Saarland University 70 appear at IEEE Security & Privacy 2020



Exploiting Speculative Execution – S&P 2019

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:





Exploiting Speculative Execution – S&P 2019

#### Exploits *speculative execution*

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:







Exploiting Speculative Execution – S&P 2019

#### Exploits *speculative execution*

#### Almost all modern CPUs are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:









#### Long Term: Co-design of software and hardware countermeasures



#### Long Term: Co-design of software and hardware countermeasures

#### Short and Mid Term: Software countermeasures

#### Compiler-level countermeasures Example: insert | EENICE to sole

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

• Example: insert LFENCE to selectively stop speculative execution



#### Long Term: Co-design of software and hardware countermeasures

#### **Short and Mid Term:** Software countermeasures

#### **Compiler-level countermeasures**

Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

• Example: insert LFENCE to selectively stop speculative execution





#### Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html



#### Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"



#### Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"

> "there is *no guarantee* that all possible instances of [Spectre] will be instrumented"



#### Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"

> "there is *no guarantee* that all possible instances of [Spectre] will be instrumented"

# Bottom line: No guarantees!

# Contributions

# Contributions

#### Semantic notion of security against speculative execution attacks



# Contributions

#### Semantic notion of security against speculative execution attacks

#### 2. Analysis to *detect vulnerability* or *prove security*



# Outline

- 1. Speculative execution 101
- 2. Speculative non-interference
- 3. Detecting speculative leaks
- 4. Spectector + Case studies









#### Prediction based on **branch** history & program structure





#### Prediction based on **branch** history & program structure



#### Size of array A if (x < A size) y = B[A[x]]

### Wrong predicton? **Rollback changes**! Architectural (ISA) state Microarchitectural state

#### Prediction based on **branch** history & program structure





#### Program **P** is speculatively non-interferent if

#### Program P is speculatively non-interferent if

Informally:

Leakage of P in non-speculative execution

#### Leakage of P in speculative execution

# How to capture leakage?

# Non-speculative semantics

# Speculative semantics

#### Attacker model

# How to capture leakage?

# Non-speculative semantics

# Speculative semantics

#### Attacker model

#### Model program's behavior

# How to capture leakage?

# Non-speculative semantics

# Speculative semantics

# Capture attacker's observational power

#### Attacker model

Model program's behavior



rcx < - xEND:

if (x < A\_size) y = B[A[x]]





rcx < - xEND:

if (x < A\_size) y = B[A[x]]







rcx <- **x** 

END:

if (x < A\_size) y = B[A[x]]









rcx <- x END:

if (x < A\_size) y = B[A[x]]







rcx <- x END:

if (x < A\_size) y = B[A[x]]






### **µAssembly + non-speculative semantics**

rcx <- x END:

if (x < A\_size) y = B[A[x]]







rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

#### **Prediction Oracle O**: branch prediction + length of speculative window

### Starts *speculative transactions* upon branch instructions





rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

#### **Prediction Oracle O**: branch prediction + length of speculative window

### Starts *speculative transactions* upon branch instructions

### Committed upon correct speculation





rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- x jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

#### Starts speculative transactions upon branch instructions

#### Committed upon correct speculation

Rolled back upon misspeculation



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>



Attacker can observe: - locations of *memory accesses* 

- branch/jump targets
- *start/end* speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>



Attacker can observe: - locations of *memory* accesses

- branch/jump targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



rax <- A size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory accesses*
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

load **B+A**[**x**]



Attacker can observe:

- locations of *memory accesses*
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rollback pc *END*  Attacker can observe:

- locations of *memory accesses*
- **branch/jump** targets
- **start/end** speculative execution



rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>



Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution



### Speculative non-interference

#### Formally!



## Speculative non-interference Formally!

#### Program P is speculatively non-interferent for prediction oracle O if



# Speculative non-interference

#### Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s*':



# Speculative non-interference

#### Program **P** is **speculatively non-interferent** for prediction oracle **O** if

#### For all program states *s* and *s* ': $\mathbf{P}_{non-spec}(\mathbf{s}) = \mathbf{P}_{non-spec}(\mathbf{s'})$



### Speculative non-interference Formally!

#### Program **P** is speculatively non-interferent for prediction oracle **O** if

## For all program states *s* and *s* ': $\mathbf{P}_{non-spec}(\mathbf{s}) = \mathbf{P}_{non-spec}(\mathbf{s'})$

 $\implies \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s}',\boldsymbol{O})$ 



## Always-mispredict speculative semantics

### Mispredict **all** branch instructions

#### Fixed speculative window

Rollback of every transaction

## Always-mispredict speculative semantics

### Mispredict **all** branch instructions

#### Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case* 

 $\begin{aligned} \mathbf{P}_{am}(\boldsymbol{s}) &= \mathbf{P}_{am}(\boldsymbol{s'}) & \longleftrightarrow \\ & \bigvee \mathbf{O}. \ \mathbf{P}_{spec}(\boldsymbol{s}, \mathbf{O}) &= \mathbf{P}_{spec}(\boldsymbol{s'}, \mathbf{O}) \end{aligned}$ 



### Always-mispredict speculative semantics

#### Mispredict **all** branch instructions

#### Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case* 

 $\mathbf{P}_{am}(\boldsymbol{s}) = \mathbf{P}_{am}(\boldsymbol{s'}) \iff$  $\forall \mathbf{O}. \mathbf{P}_{\mathtt{spec}}(\mathbf{s}, \mathbf{O}) = \mathbf{P}_{\mathtt{spec}}(\mathbf{s}', \mathbf{O})$ 

#### If program **P** satisfies $\forall s, s'. P_{non-spec}(s) = P_{non-spec}(s')$ $\implies \mathbf{P}_{am}(\mathbf{s}) = \mathbf{P}_{am}(\mathbf{s'})$ then **P** satisfies **SN** w.r.t. all **O**





## Detecting speculative leaks




#### **Symbolic trace**: path condition + observations along the symbolic path







rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>





rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>





rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>





rax <- A\_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>





















rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:



![](_page_84_Picture_4.jpeg)

start pc L1 load A+x load B+A[x] rollback pc END

![](_page_84_Picture_7.jpeg)

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

![](_page_85_Picture_2.jpeg)

![](_page_85_Picture_4.jpeg)

start pc L1 load A+x load B+A[x] rollback pc END

![](_page_85_Picture_7.jpeg)

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

![](_page_86_Picture_2.jpeg)

![](_page_86_Picture_4.jpeg)

#### start pc L1 load A+x load B+A[x] rollback pc END

![](_page_86_Picture_7.jpeg)

![](_page_87_Figure_1.jpeg)

#### **Symbolic trace**: path condition + observations along the symbolic path

![](_page_87_Figure_3.jpeg)

![](_page_87_Picture_5.jpeg)

if  $MemLeak(\tau)$  then return INSECURE if  $CtrlLeak(\tau)$  then return INSECURE return SECURE

rax rcy jmr 102 102 END:

*L1*:

#### For each symbolic trace $\tau \in traces(prg)$

![](_page_88_Picture_9.jpeg)

#### For each symbolic trace $\tau \in traces(prg)$ if $MemLeak(\tau)$ then

#### return INSECURE if $CtrlLeak(\tau)$ then

return INSECURE return SECURE

rax rcy jmr 102 102 END:

*L1*:

![](_page_89_Picture_10.jpeg)

Speculative memory accesses *must* depend only on

- Non-sensitive information
- Non-speculative observations

Speculative memory accesses *must* depend only on

Non-sensitive information

 $\mathcal{T}$ 

Non-speculative observations

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 $\mathcal{T}$ 

![](_page_92_Figure_7.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 $\mathcal{T}$ 

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$ 

![](_page_93_Picture_10.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

 $\mathcal{T}$ 

 $S_1$ 

 $S_{\gamma}$ 

Non-speculative observations

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$ 

![](_page_94_Picture_9.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

![](_page_95_Picture_5.jpeg)

 $\mathcal{T}$ 

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$ 

![](_page_95_Picture_10.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

![](_page_96_Figure_4.jpeg)

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$ 

![](_page_96_Picture_9.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

![](_page_97_Figure_4.jpeg)

![](_page_97_Picture_7.jpeg)

![](_page_97_Picture_8.jpeg)

Speculative memory accesses *must* depend only on

Non-sensitive information

 $\mathcal{T}$ 

Non-speculative observations

![](_page_98_Figure_4.jpeg)

![](_page_98_Figure_6.jpeg)

![](_page_98_Picture_8.jpeg)

![](_page_99_Picture_0.jpeg)

#### Spectector + Case studies

#### Spectector

mov mov cmp jae L1: mov mov

| rax, | A_size         |
|------|----------------|
| rcx, | X              |
| rcx, | rax            |
| END  |                |
| rax, | <b>A</b> [rcx] |
| rax, | <b>B</b> [rax] |

Check for speculative leaks

![](_page_100_Figure_4.jpeg)

# rax <- A\_size rcx <- x jmp rcx≥rax, END load rax, A + rcx load rax, B + rax</pre>

Symbolic

execution

END:

L1:

x64 to µASM

#### Spectector

![](_page_101_Figure_1.jpeg)

• **Z3** for symbolic execution and leak detection

rax <- A size rcx <- **x** jmp rcx≥rax, *END* load rax, A + rcx load rax, B + rax

> Symbolic execution

Check for speculative leaks

![](_page_101_Picture_10.jpeg)

# Case study: compiler mitigations

#### Target:

- 15 variants of Spectre V1 by Paul Kocher\*
- Compiled with Microsoft Visual C++, Intel ICC, and Clang with different mitigations and optimization levels
- 240 assembly programs of up to 200 instructions each

#### How:

#### Use Spectector to prove security or detect leaks

\* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

![](_page_102_Picture_10.jpeg)

|     | VCC |     |            |     |           |     |     | Ι          | CC    |           | CLANG |     |     |     |            |  |
|-----|-----|-----|------------|-----|-----------|-----|-----|------------|-------|-----------|-------|-----|-----|-----|------------|--|
| Ex. | UNP |     | Fen 19.15  |     | Fen 19.20 |     | U   | UNP        |       | EN        | UNP   |     | Fen |     | SLH        |  |
|     | -00 | -02 | -00        | -02 | -00       | -02 | -00 | -02        | -00   | -02       | -00   | -02 | -00 | -02 | -00        |  |
| 01  | 0   | 0   |            |     | •         | •   | Ο   | 0          | •     |           | 0     | Ο   | •   | •   |            |  |
| 02  | 0   | 0   | lacksquare |     | •         | •   | 0   | 0          | •     |           | 0     | 0   |     |     | lacksquare |  |
| 03  | 0   | 0   | •          | 0   | •         | •   | 0   | 0          | •     | •         | 0     | 0   |     |     |            |  |
| 04  | 0   | 0   | 0          | 0   | •         | •   | 0   | 0          | •     |           | 0     | 0   |     |     |            |  |
| 05  | 0   | 0   | •          | 0   | •         | 0   | 0   | 0          | •     |           | 0     | 0   |     |     |            |  |
| 06  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | •     | •         | 0     | 0   |     |     | $\bullet$  |  |
| 07  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | ullet | •         | 0     | 0   | •   | •   | $\bullet$  |  |
| 08  | 0   | •   | 0          | •   | 0         | •   | 0   | lacksquare | •     | •         | 0     |     | •   | •   | $\bullet$  |  |
| 09  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | •     | •         | 0     | 0   | •   | •   | ullet      |  |
| 10  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | •     | $\bullet$ | 0     | 0   | •   | •   | igodot     |  |
| 11  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | •     | •         | 0     | 0   | •   | •   | lacksquare |  |
| 12  | 0   | 0   | 0          | 0   | •         | •   | 0   | 0          | •     | •         | 0     | 0   | •   | •   | igodot     |  |
| 13  | 0   | 0   | 0          | 0   | 0         | 0   | 0   | 0          | •     | •         | 0     | 0   | •   | •   | ullet      |  |
| 14  | 0   | 0   | 0          | 0   | •         | •   | 0   | 0          | •     | •         | 0     | 0   | •   | •   | $\bullet$  |  |
| 15  | 0   | 0   | 0          | 0   | Ο         | 0   | Ο   | 0<br>24    | •     | •         | 0     | Ο   | •   | •   | 0          |  |

![](_page_103_Figure_2.jpeg)

|     |     | Vcc        |           |     |           |     |     | Ic      | CC  |           | CLANG |     |       |     |            |  |
|-----|-----|------------|-----------|-----|-----------|-----|-----|---------|-----|-----------|-------|-----|-------|-----|------------|--|
| Ex. | UNP |            | Fen 19.15 |     | Fen 19.20 |     | U   | NP      | F   | EN        | U     | NP  | F     | EN  | Slh        |  |
|     | -00 | -02        | -00       | -02 | -00       | -02 | -00 | -02     | -00 | -02       | -00   | -02 | -00   | -02 | -00 -      |  |
| 01  | 0   | Ο          | •         |     |           | •   | 0   | 0       | •   |           | 0     | Ο   | •     | •   | •          |  |
| 02  | 0   | 0          | •         | •   | •         | •   | 0   | 0       | •   |           | 0     | 0   | •     | •   | ullet      |  |
| 03  | Ο   | 0          | •         | 0   | •         | •   | Ο   | 0       | •   | $\bullet$ | Ο     | Ο   | •     | •   | •          |  |
| 04  | 0   | 0          | 0         | 0   | ۲         | ۲   | 0   | 0       | •   | ٠         | 0     | Ο   | ۲     | ۲   | ٠          |  |
| 05  | 0   | 0          | •         | 0   | •         | 0   | 0   | 0       | •   |           | 0     | 0   | •     | •   | ullet      |  |
| 06  | 0   | 0          | 0         | 0   | 0         | 0   | 0   | 0       | •   |           | 0     | 0   | ullet | •   | ullet      |  |
| 07  | 0   | 0          | 0         | 0   | 0         | 0   | 0   | 0       | •   |           | 0     | 0   | •     | •   | ullet      |  |
| 08  | 0   | lacksquare | 0         | •   | 0         |     | 0   | •       | •   | •         | 0     | •   |       | •   |            |  |
| 09  | Ο   | 0          | 0         | 0   | 0         | 0   | 0   | 0       | •   | •         | Ο     | Ο   |       | •   |            |  |
| 10  | Ο   | 0          | 0         | 0   | Ο         | 0   | Ο   | 0       | •   | $\bullet$ | Ο     | Ο   | •     | •   |            |  |
| 11  | Ο   | 0          | 0         | 0   | Ο         | 0   | Ο   | 0       | ٠   | •         | Ο     | 0   | ۲     | ٠   | •          |  |
| 12  | Ο   | 0          | 0         | 0   | ۲         | ۲   | Ο   | 0       | ٠   | •         | Ο     | Ο   | ۲     | ۲   | •          |  |
| 13  | Ο   | 0          | 0         | 0   | Ο         | 0   | Ο   | 0       | ٠   | •         | Ο     | Ο   | ۲     | ۲   | •          |  |
| 14  | Ο   | 0          | 0         | 0   | •         | •   | 0   | 0       | •   | $\bullet$ | 0     | Ο   | •     | •   | lacksquare |  |
| 15  | 0   | 0          | 0         | 0   | 0         | 0   | 0   | 0<br>24 | •   | •         | 0     | 0   | ٠     | ٠   | Ο          |  |

![](_page_104_Figure_2.jpeg)

|     |     |     | V         | CC         |           |     |     | Ι       | CC  |     |     | Clang |     |     |            |  |
|-----|-----|-----|-----------|------------|-----------|-----|-----|---------|-----|-----|-----|-------|-----|-----|------------|--|
| Ex. | Unp |     | Fen 19.15 |            | Fen 19.20 |     | Unp |         | F   | EN  | UNP |       | Fen |     | Slh        |  |
|     | -00 | -02 | -00       | -02        | -00       | -02 | -00 | -02     | -00 | -02 | -00 | -02   | -00 | -02 | -00 -      |  |
| 01  | 0   | 0   | •         |            | •         | •   | Ο   | 0       | •   | •   | 0   | 0     | •   | •   | •          |  |
| 02  | 0   | 0   |           | lacksquare | •         | •   | 0   | 0       | •   |     | 0   | 0     |     | •   | ullet      |  |
| 03  | 0   | 0   | •         | 0          | •         |     | 0   | 0       | •   | •   | 0   | 0     |     |     | lacksquare |  |
| 04  | 0   | 0   | 0         | 0          | •         | •   | 0   | 0       | •   | •   | 0   | 0     |     | •   | igodot     |  |
| 05  | 0   | 0   | •         | 0          | •         | 0   | 0   | 0       | •   | •   | 0   | 0     |     | •   | lacksquare |  |
| 06  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | •   | •   | 0   | 0     |     |     | igodot     |  |
| 07  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | •   | •   | 0   | 0     |     | •   | igodot     |  |
| 08  | 0   | •   | 0         | $\bullet$  | 0         | •   | 0   | •       | •   | •   | 0   |       |     | •   | ullet      |  |
| 09  | Ο   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | ۲   | •   | 0   | 0     | ۲   | •   | •          |  |
| 10  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | •   | •   | 0   | 0     |     | •   | ullet      |  |
| 11  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | •   | •   | 0   | 0     |     | •   | igodot     |  |
| 12  | 0   | 0   | 0         | 0          | •         |     | 0   | 0       | •   | •   | 0   | 0     |     | •   | igodot     |  |
| 13  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0       | •   |     | 0   | 0     |     | •   |            |  |
| 14  | 0   | 0   | 0         | 0          | •         | •   | 0   | 0       | •   | •   | 0   | 0     | ●   | •   | ullet      |  |
| 15  | 0   | 0   | 0         | 0          | 0         | 0   | 0   | 0<br>24 | •   | •   | 0   | 0     | •   | •   | 0          |  |

![](_page_105_Picture_2.jpeg)

| Ex. |     | Vcc |           |            |            |            |     |         | C         |            |     | CLANG |            |            |            |  |
|-----|-----|-----|-----------|------------|------------|------------|-----|---------|-----------|------------|-----|-------|------------|------------|------------|--|
|     | Unp |     | Fen 19.15 |            | Fen 19.20  |            | U   | NP      | FI        | EN         | Unp |       | Fen        |            | Slh        |  |
|     | -00 | -02 | -00       | -02        | -00        | -02        | -00 | -02     | -00       | -02        | -00 | -02   | -00        | -02        | -00 -      |  |
| 01  | 0   | 0   | •         | ●          | ●          | •          | 0   | 0       | •         | ●          | 0   | 0     | ●          | ●          |            |  |
| 02  | 0   | 0   |           | lacksquare | lacksquare | igodot     | 0   | 0       | •         | lacksquare | 0   | 0     | lacksquare | lacksquare | igodot     |  |
| 03  | 0   | 0   |           | 0          | ●          | lacksquare | 0   | 0       | •         | ●          | 0   | 0     | ullet      | lacksquare | lacksquare |  |
| 04  | 0   | 0   | 0         | 0          | •          | •          | 0   | 0       | •         | ●          | 0   | 0     | $\bullet$  | lacksquare | •          |  |
| 05  | 0   | Ο   | •         | 0          | •          | Ο          | 0   | 0       | •         | •          | 0   | 0     | $\bullet$  | •          | •          |  |
| 06  | 0   | Ο   | 0         | 0          | 0          | Ο          | 0   | 0       | $\bullet$ | •          | 0   | 0     | $\bullet$  | $\bullet$  | •          |  |
| 07  | 0   | Ο   | 0         | 0          | 0          | 0          | 0   | 0       | •         | •          | 0   | 0     | $\bullet$  | lacksquare | •          |  |
| 08  | 0   | ٠   | 0         | •          | 0          | •          | 0   | ۲       | •         | •          | 0   | •     | •          | •          | ullet      |  |
| 09  | 0   | 0   | 0         | 0          | 0          | 0          | 0   | 0       | ۲         | •          | 0   | 0     | $\bullet$  | •          | ullet      |  |
| 10  | 0   | 0   | 0         | 0          | 0          | 0          | 0   | 0       | ۲         | •          | 0   | 0     | •          | •          | ullet      |  |
| 11  | 0   | 0   | 0         | 0          | 0          | 0          | 0   | 0       | ۲         | •          | 0   | 0     | •          | •          |            |  |
| 12  | 0   | 0   | 0         | 0          | •          | •          | 0   | 0       | ٠         | •          | 0   | 0     | •          | •          | lacksquare |  |
| 13  | 0   | 0   | 0         | 0          | 0          | 0          | 0   | 0       | •         | •          | 0   | 0     | •          | •          |            |  |
| 14  | 0   | 0   | 0         | 0          | •          | •          | 0   | 0       | ●         | •          | 0   | 0     | ●          | •          | lacksquare |  |
| 15  | 0   | 0   | Ο         | Ο          | 0          | Ο          | 0   | 0<br>24 | •         | •          | 0   | 0     | •          | •          | Ο          |  |

![](_page_106_Picture_2.jpeg)

| Fx  |     |     | V         | CC  |            |     |     | ICC     |     |     |     |     | CLANG |            |     |  |
|-----|-----|-----|-----------|-----|------------|-----|-----|---------|-----|-----|-----|-----|-------|------------|-----|--|
| Ex. | UNP |     | Fen 19.15 |     | Fen 19.20  |     | U]  | NP      | FI  | EN  | U   | NP  | FI    | EN         | Sle |  |
|     | -00 | -02 | -00       | -02 | -00        | -02 | -00 | -02     | -00 | -02 | -00 | -02 | -00   | -02        | -00 |  |
| 01  | 0   | 0   | •         |     |            | •   | 0   | 0       | ۲   | •   | 0   | 0   | •     | •          |     |  |
| 02  | 0   | 0   | •         |     |            |     | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 03  | 0   | 0   | •         | 0   | lacksquare |     | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 04  | 0   | 0   | 0         | 0   |            |     | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 05  | 0   | 0   | •         | 0   |            | 0   | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 06  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     | lacksquare |     |  |
| 07  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 08  | 0   | •   | 0         |     | 0          |     | 0   | •       | •   | •   | 0   |     | •     | •          |     |  |
| 09  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     | •          |     |  |
| 10  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 11  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     | •          |     |  |
| 12  | 0   | 0   | 0         | 0   |            |     | 0   | 0       | •   | •   | 0   | 0   | •     | •          |     |  |
| 13  | 0   | 0   | 0         | 0   | 0          | 0   | 0   | 0       | •   | •   | 0   | 0   | •     |            |     |  |
| 14  | 0   | 0   | 0         | 0   |            |     | 0   | 0       | •   | •   | 0   | 0   | •     | •          |     |  |
| 15  | 0   | Ο   | 0         | 0   | 0          | 0   | 0   | 0<br>24 | •   | •   | 0   | 0   | •     | •          | 0   |  |

#### No countermeasures

![](_page_107_Picture_5.jpeg)
|     | Results |     |     |       |     |       |     |         |            | Automated insertion of fences |     |     |     |     |           |   |
|-----|---------|-----|-----|-------|-----|-------|-----|---------|------------|-------------------------------|-----|-----|-----|-----|-----------|---|
| _   |         |     | V   | CC    |     |       |     | Ι       | CC         |                               |     |     | CLA | ANG |           |   |
| Ex. | U       | NP  | Fen | 19.15 | Fen | 19.20 | U   | NP      | FI         | EN                            | U   | NP  | F   | EN  | SI        | H |
|     | -00     | -02 | -00 | -02   | -00 | -02   | -00 | -02     | -00        | -02                           | -00 | -02 | -00 | -02 | -00       |   |
| 01  | 0       | 0   | •   | •     | •   | •     | 0   | 0       | •          | •                             | 0   | 0   | ●   | •   | •         |   |
| 02  | 0       | 0   | •   | •     | •   | ●     | 0   | 0       | •          | •                             | 0   | 0   | •   | ●   | ●         |   |
| 03  | Ο       | Ο   | •   | 0     | •   | •     | Ο   | Ο       | ۲          | •                             | Ο   | Ο   | •   | •   | $\bullet$ |   |
| 04  | 0       | 0   | 0   | 0     | •   | •     | 0   | 0       | •          |                               | 0   | 0   | •   | •   | •         |   |
| 05  | 0       | 0   | •   | 0     | •   | 0     | 0   | 0       |            | •                             | 0   | 0   | •   | •   | $\bullet$ |   |
| 06  | 0       | 0   | 0   | 0     | Ο   | 0     | 0   | 0       | ٠          | ٠                             | 0   | 0   | •   | •   | $\bullet$ |   |
| 07  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0       | •          |                               | 0   | 0   | •   | •   | •         |   |
| 08  | 0       | •   | 0   |       | 0   |       | 0   | •       |            |                               | 0   |     | •   |     |           |   |
| 09  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0       |            |                               | 0   | 0   | •   |     |           |   |
| 10  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0       |            |                               | 0   | 0   |     |     |           |   |
| 11  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0       | •          |                               | 0   | 0   | •   | •   |           |   |
| 12  | 0       | 0   | 0   | 0     |     |       | 0   | 0       |            |                               | 0   | 0   | •   |     |           |   |
| 13  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0       | lacksquare |                               | 0   | 0   | •   | •   |           |   |
| 14  | 0       | 0   | 0   | 0     | •   | •     | 0   | 0       | •          |                               | 0   | 0   | •   | •   |           |   |
| 15  | 0       | 0   | 0   | 0     | 0   | 0     | 0   | 0<br>24 | •          |                               | 0   | 0   | •   | •   | 0         |   |



|     |     |     | V      | CC    |            |            |     | Ι       | CC         |            |     |     | CLA        | ANG        |            |
|-----|-----|-----|--------|-------|------------|------------|-----|---------|------------|------------|-----|-----|------------|------------|------------|
| Ex. | U   | NP  | Fen    | 19.15 | Fen        | 19.20      | U   | NP      | FI         | EN         | Ur  | NP  | F          | EN         | Slh        |
|     | -00 | -02 | -00    | -02   | -00        | -02        | -00 | -02     | -00        | -02        | -00 | -02 | -00        | -02        | -00 -      |
| 01  | 0   | 0   |        |       |            |            | 0   | 0       | •          |            | 0   | 0   |            | •          |            |
| 02  | 0   | 0   |        | •     | •          |            | 0   | 0       | •          |            | 0   | 0   |            | •          |            |
| 03  | 0   | 0   | igodot | 0     | lacksquare | lacksquare | 0   | 0       | •          | lacksquare | 0   | 0   | lacksquare | lacksquare | igodot     |
| 04  | 0   | 0   | 0      | 0     | ٠          | lacksquare | 0   | 0       | •          | •          | 0   | 0   | •          | •          | lacksquare |
| 05  | 0   | 0   |        | 0     | ۲          | 0          | 0   | 0       | •          |            | 0   | 0   | ●          | •          |            |
| 06  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | •          | ۲          | 0   | 0   | ●          | •          |            |
| 07  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | •          |            | 0   | 0   |            |            |            |
| 08  | 0   |     | 0      | •     | 0          |            | 0   |         | lacksquare |            | 0   | •   |            |            |            |
| 09  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | lacksquare | $\bullet$  | 0   | 0   | $\bullet$  |            |            |
| 10  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | ●          | $\bullet$  | 0   | 0   | $\bullet$  | lacksquare | $\bullet$  |
| 11  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | $\bullet$  | $\bullet$  | 0   | 0   | $\bullet$  |            |            |
| 12  | 0   | 0   | 0      | 0     | •          |            | 0   | 0       | lacksquare |            | 0   | 0   | $\bullet$  |            |            |
| 13  | 0   | 0   | 0      | 0     | 0          | 0          | 0   | 0       | •          |            | 0   | 0   |            |            |            |
| 14  | 0   | 0   | 0      | 0     |            |            | 0   | 0       | ●          |            | 0   | 0   |            | •          |            |
| 15  | 0   | 0   | 0      | 0     | 0          | 0          | Ο   | 0<br>24 | •          | lacksquare | 0   | 0   |            | •          | 0          |

#### Speculative load hardening







|     |     |     | Vo        | CC         |           |       |     | IC      | C         |            |     |     | CLA   | NG        |            |
|-----|-----|-----|-----------|------------|-----------|-------|-----|---------|-----------|------------|-----|-----|-------|-----------|------------|
| Ex. | U   | NP  | Fen       | 19.15      | Fen       | 19.20 | Un  | NP      | FE        | EN         | UN  | NP  | FE    | EN        | Slh        |
|     | -00 | -02 | -00       | -02        | -00       | -02   | -00 | -02     | -00       | -02        | -00 | -02 | -00   | -02       | -00 -      |
| 01  | 0   | 0   | •         | •          | •         | •     | 0   | 0       | •         | •          | 0   | 0   | •     | •         | •          |
| 02  | 0   | 0   |           | lacksquare | •         | •     | 0   | 0       | igodot    | lacksquare | 0   | 0   | •     | •         | lacksquare |
| 03  | 0   | 0   |           | 0          | $\bullet$ | •     | 0   | 0       | ●         | igodot     | 0   | 0   | •     | •         | ullet      |
| 04  | Ο   | 0   | 0         | 0          | $\bullet$ | ٠     | 0   | Ο       | •         | •          | 0   | 0   | ullet | $\bullet$ | lacksquare |
| 05  | 0   | 0   | $\bullet$ | 0          | •         | 0     | 0   | 0       | •         | •          | 0   | 0   | ٠     | $\bullet$ | $\bullet$  |
| 06  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | •         | •          | 0   | 0   | ۲     | •         | ullet      |
| 07  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | •         | •          | 0   | 0   | •     | •         |            |
| 08  | 0   | •   | 0         |            | 0         |       | 0   | •       | •         | •          | 0   | •   |       | •         |            |
| 09  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | ●         | •          | 0   | 0   |       | •         | $\bullet$  |
| 10  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | •         | •          | 0   | 0   |       | •         |            |
| 11  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | •         | •          | 0   | 0   |       | •         |            |
| 12  | 0   | 0   | 0         | 0          | ۲         |       | 0   | 0       | •         | •          | 0   | 0   |       | ۲         |            |
| 13  | 0   | 0   | 0         | 0          | 0         | 0     | 0   | 0       | $\bullet$ | •          | 0   | 0   | ٠     | ●         | ullet      |
| 14  | 0   | 0   | 0         | 0          |           |       | 0   | 0       | •         | •          | 0   | 0   |       | •         |            |
| 15  | Ο   | 0   | 0         | Ο          | 0         | 0     | 0   | 0<br>24 | •         | •          | Ο   | 0   | •     | •         | 0          |



|     |     |     | V   | CC    |     |       |     | Ic         | CC  |     |     |     | CLA | ANG |            |
|-----|-----|-----|-----|-------|-----|-------|-----|------------|-----|-----|-----|-----|-----|-----|------------|
| Ex. | U   | NP  | Fen | 19.15 | Fen | 19.20 | U   | NP         | FI  | EN  | U   | NP  | FI  | EN  | SLH        |
|     | -00 | -02 | -00 | -02   | -00 | -02   | -00 | -02        | -00 | -02 | -00 | -02 | -00 | -02 | -00        |
| 01  | 0   | 0   |     |       | •   | •     | 0   | 0          | •   | •   | 0   | Ο   | •   | •   |            |
| 02  | 0   | 0   | •   |       | •   | •     | 0   | 0          | •   |     | 0   | 0   | •   |     | lacksquare |
| 03  | 0   | 0   | •   | 0     | •   | •     | 0   | 0          | •   |     | 0   | 0   |     |     |            |
| 04  | 0   | 0   | 0   | 0     |     |       | 0   | 0          | •   |     | 0   | 0   |     |     |            |
| 05  | 0   | 0   | •   | 0     | •   | 0     | 0   | 0          | •   |     | 0   | 0   | •   | •   |            |
| 06  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | •   |     | 0   | 0   |     |     | $\bullet$  |
| 07  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | •   |     | 0   | 0   | •   | •   | $\bullet$  |
| 08  | 0   | •   | 0   | •     | 0   | •     | 0   | lacksquare | ●   | •   | 0   |     | •   | •   | ullet      |
| 09  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | ●   | •   | 0   | 0   | •   | •   | $\bullet$  |
| 10  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | ●   | •   | 0   | 0   | •   | •   | igodot     |
| 11  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | •   | •   | 0   | 0   | •   | •   | $\bullet$  |
| 12  | 0   | 0   | 0   | 0     |     |       | 0   | 0          | •   |     | 0   | 0   | •   |     | $\bullet$  |
| 13  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0          | ●   | •   | 0   | 0   | •   | •   | ullet      |
| 14  | 0   | 0   | 0   | 0     | •   | •     | 0   | 0          | •   | •   | 0   | 0   | •   | •   | $\bullet$  |
| 15  | 0   | 0   | 0   | 0     | 0   | 0     | 0   | 0<br>24    | •   | •   | 0   | 0   | •   | •   | 0          |



|     |     |     | Vcc                          |                 |              | ICC          |               | CLANG   |            |
|-----|-----|-----|------------------------------|-----------------|--------------|--------------|---------------|---------|------------|
| Ex. | U   | NP  | Fen 19.15                    | Fen 19.20       | Unp          | Fen          | Unp           | Fen     | Slh        |
|     | -00 | -02 |                              |                 | Sumn         | narv         |               | -02     | -00 -      |
| 01  | 0   | 0   |                              |                 |              |              |               | •       |            |
| 02  | 0   | 0   | <ul> <li>Leaks in</li> </ul> | all unprotect   | ted progra   | IMS          |               | •       |            |
| 03  | 0   | 0   | (except e                    | example #08     | 3 with optir | mizations)   |               |         | ullet      |
| 04  | 0   | 0   |                              |                 |              | 11/20001107  |               |         |            |
| 05  | 0   | 0   | • Confirm a                  | all vulnerabili | ties in VC   | C pointed ou | ut by Paul Ko | ocher • | lacksquare |
| 06  | 0   | 0   |                              |                 |              | I            | <b>,</b>      |         | ٠          |
| 07  | 0   | 0   | <ul> <li>Programs</li> </ul> | s with fences   | s (ICC and   | d Clang) are | secure        |         | ullet      |
| 08  | 0   | •   |                              |                 | ·            |              |               |         |            |
| 09  | 0   | 0   | • Unnec                      | essary fence    | es           |              |               |         |            |
| 10  | 0   | 0   |                              |                 |              |              |               |         |            |
| 11  | 0   | 0   | <ul> <li>Programs</li> </ul> | s with SLH a    | are secure   | except #10   | and #15       |         | ullet      |
| 12  | 0   | 0   |                              |                 |              |              |               |         | ullet      |
| 13  | 0   | 0   |                              |                 |              |              |               | •       | ٠          |
| 14  | 0   | 0   | 0 0                          | • •             | 0 0          | • •          | 0 0           | • •     |            |
| 15  | Ο   | 0   | 0 0                          | 0 0             | 0 0<br>24    | • •          | 0 0           | • •     | Ο          |



# Case study: scalability

Target: Xen hypervisors

#### Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
  - - functions)

#### Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from $\sim 4'000$

# Case study: scalability

Target: Xen hypervisors

#### Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
  - - functions)

Trade-offs affect analysis soundness and completeness

 Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from  $\sim 4'000$ 





|          | 1 | - |
|----------|---|---|
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | 2 |
|          |   | _ |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | Ξ |
|          |   | 2 |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | 1 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   | _ |
|          | 1 | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | - |
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
| <u> </u> | 1 | - |
|          | 4 |   |

SNI 10x-100x faster
20.2% traces

10<sup>5</sup> Symbolic Execution [ms (logscale)]  $10^{4}$ 10<sup>3</sup> 10<sup>2</sup>  $10^{1}$  $10^{0}$  $10^{-1}$  $10^{-1}$ 



|          | - |   |
|----------|---|---|
|          | 1 | - |
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | 2 |
|          |   | _ |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | Ξ |
|          |   | 2 |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | 1 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   | _ |
|          | 1 | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | - |
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
| <u> </u> | 1 | - |
|          | 4 |   |

SNI 10x-100x faster
20.2% traces

SNI ≤10x faster
41.9% traces

10<sup>5</sup> Symbolic Execution [ms (logscale)]  $10^{4}$  $10^{3}$ 10<sup>2</sup>  $10^{1}$  $10^{0}$  $10^{-1}$  $10^{-1}$ 



| ' ' | -   |
|-----|-----|
|     | -   |
|     |     |
|     | -   |
|     |     |
|     | -   |
|     |     |
|     |     |
|     |     |
|     |     |
|     | _   |
|     | -   |
|     | - 7 |
|     | -   |
|     | -   |
|     | _   |
|     |     |
|     |     |
|     | -   |
|     |     |
|     |     |
|     |     |
|     | -   |
|     | -   |
|     | -   |
|     | _   |
|     |     |
|     | -   |
|     | _   |
|     |     |
|     | _   |
|     | -   |
|     |     |
|     |     |
|     |     |
|     | -   |
|     | -   |
|     | _   |
|     | _   |
|     |     |
|     | -   |
|     | -   |
|     |     |
|     | _   |
|     |     |
|     |     |
|     |     |
|     |     |
|     | -   |
|     | _   |
|     | -   |
|     | -   |
|     |     |
|     |     |
|     | -   |
|     |     |
|     | -   |
|     |     |
|     |     |
|     |     |
|     |     |
|     | -   |
|     | -   |
|     | 7   |
|     | -   |
|     | -   |
|     |     |
|     | -   |
|     |     |
|     | -   |
|     |     |
|     |     |
|     |     |
|     | _   |
|     | _   |
|     | _   |
|     | _   |
|     |     |
|     | -   |
|     | -   |
|     |     |
|     | _   |
|     | -   |
|     |     |
|     |     |
|     |     |
|     | -   |
|     | _   |
|     | -   |
|     | 17  |
|     |     |

SNI 10x-100x faster
20.2% traces

SNI ≤10x faster
 41.9% traces

SNI ≤10x slower
 26.9% traces

10<sup>5</sup> Symbolic Execution [ms (logscale)]  $10^{4}$  $10^{3}$ 10<sup>2</sup>  $10^{1}$  $10^{0}$  $10^{-1}$  $10^{-1}$ 



|                | _ |
|----------------|---|
|                | 2 |
|                | - |
|                |   |
|                |   |
|                | - |
|                |   |
|                |   |
|                |   |
|                | - |
|                |   |
|                | / |
|                | - |
|                | _ |
|                |   |
|                | _ |
|                |   |
|                |   |
|                |   |
|                | - |
|                | - |
|                | 7 |
|                | - |
|                | - |
|                | - |
|                |   |
|                | - |
|                |   |
|                |   |
|                |   |
|                | - |
|                |   |
|                | _ |
|                | _ |
|                | _ |
|                |   |
|                | _ |
|                |   |
|                |   |
| _              |   |
|                | - |
|                | - |
|                | 7 |
|                | - |
|                |   |
|                | - |
|                |   |
|                | - |
|                |   |
|                |   |
| •              | _ |
|                | - |
|                | - |
|                | - |
|                | - |
|                | _ |
|                |   |
|                | - |
|                |   |
|                |   |
|                |   |
|                | - |
|                | - |
|                | 2 |
|                | _ |
|                | - |
|                | - |
|                |   |
|                | - |
|                |   |
|                |   |
| •              | _ |
|                | - |
|                | 7 |
| т т т <b>т</b> |   |
|                | _ |

SNI 10x-100x faster
20.2% traces

SNI ≤10x faster
 41.9% traces

- SNI ≤10x slower
   26.9% traces
- SNI 10x-100x slower
  7.9% traces

|                                        | _               |      |
|----------------------------------------|-----------------|------|
|                                        | 10 <sup>5</sup> |      |
|                                        |                 |      |
| <b>、</b><br>、<br>、<br>、<br>、<br>、<br>、 | $10^{4}$        | Ē    |
| יער                                    |                 |      |
|                                        | 10 <sup>3</sup> | -    |
|                                        |                 |      |
|                                        | 10 <sup>2</sup> |      |
| ノノノく                                   |                 |      |
|                                        | $10^{1}$        | _    |
| 2                                      |                 |      |
| )<br>)                                 | 10 <sup>0</sup> |      |
|                                        | TO              |      |
|                                        | 10-1            |      |
|                                        | TÜ              |      |
|                                        |                 | 10-1 |



| 1 1 |    |
|-----|----|
|     | -  |
|     | -  |
|     | -  |
|     |    |
|     |    |
|     |    |
|     |    |
|     | -  |
|     | _  |
|     | -  |
|     |    |
|     |    |
|     | -  |
|     |    |
|     |    |
|     |    |
|     |    |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     |    |
|     | -  |
|     |    |
|     |    |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     |    |
|     | -  |
|     |    |
|     |    |
|     |    |
|     | _  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     |    |
|     | -  |
|     |    |
|     |    |
|     | _  |
|     | _  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     |    |
|     | -  |
|     |    |
|     |    |
|     | _  |
|     | -  |
|     | -  |
|     | -  |
|     | -  |
|     | _  |
|     |    |
|     | -  |
|     |    |
|     |    |
|     |    |
|     | -  |
|     | _  |
|     | 1- |
|     | -  |



|          | 1 | - |
|----------|---|---|
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | 2 |
|          |   | _ |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | Ξ |
|          |   | 2 |
|          |   | _ |
|          |   | 4 |
|          |   |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   |   |
|          |   | 7 |
|          |   | 7 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          | _ |   |
|          |   | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | 1 |
|          |   | - |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   | _ |
|          |   |   |
|          |   |   |
|          |   |   |
|          |   | _ |
|          | 1 | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
|          |   | - |
|          |   | _ |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   | - |
|          |   |   |
|          |   |   |
|          |   |   |
|          | - | - |
|          |   | - |
|          |   | - |
|          |   | 7 |
| <u> </u> | 1 | - |
|          | 4 |   |



### Conclusion

#### Speculative non-interference

Formally!

#### Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ':  $\mathbf{P_{non-spec}}(\boldsymbol{s}) = \mathbf{P_{non-spec}}(\boldsymbol{s'})$  $\implies \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s'},\boldsymbol{O})$ 

| Ex. | Vcc |     |           |     |           |     | ICC |     |     |     | CLANG |     |     |     |     |
|-----|-----|-----|-----------|-----|-----------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
|     | Unp |     | Fen 19.15 |     | Fen 19.20 |     | Unp |     | Fen |     | Unp   |     | Fen |     | SI  |
|     | -00 | -02 | -00       | -02 | -00       | -02 | -00 | -02 | -00 | -02 | -00   | -02 | -00 | -02 | -00 |
| 01  | 0   | 0   | •         | •   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 02  | 0   | 0   | •         | •   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 03  | 0   | 0   | •         | 0   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 04  | 0   | 0   | 0         | 0   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 05  | 0   | 0   | •         | 0   | •         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 06  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 07  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 08  | 0   | •   | 0         | •   | 0         | •   | 0   | •   | •   | •   | 0     | •   | •   | •   | •   |
| 09  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 10  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 11  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 12  | 0   | 0   | 0         | 0   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 13  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 14  | 0   | 0   | 0         | 0   | •         | •   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | •   |
| 15  | 0   | 0   | 0         | 0   | 0         | 0   | 0   | 0   | •   | •   | 0     | 0   | •   | •   | 0   |



#### Speculative non-interference

Program **P** is **speculatively non-interferent** for prediction oracle



Ex.

08

15

| Spectector |  |
|------------|--|
|            |  |

rax, **A size** 

| Formally!          |  |
|--------------------|--|
| oracle <b>O</b> if |  |

rcx, X rcx, rax ENDrax, A[rcx]

mov

mov

cmp

jae

L1: mov

x64 to µASM

 $10^1$ 

 $10^{2}$ 

Speculative non-interference [ms (logscale)]

 $10^{3}$ 

 $10^{4}$ 

rax <- A size rcx <- **x** jmp rcx≥rax, *END* load rax, A + rcx load rax, B + rax

*L1:* 

END:

#### Spectector

https://spectector.github.io

marco.guarnieri@imdea.org

#### @MarcoGuarnier1







#### Symbolic execution



