
Designing a context switching service for Pip

Florian Vanhems

June 16, 2019 - ENTROPY 2019

Lille University, France



Pip’s overview



A minimalist kernel

Designed to provide formally proven memory isolation to applications.

1



Memory partitioning

Multiplexer

Linux FreeRTOS

Shell

2



Stakes of context switching

Usual software attacks target the control flow (e.g. buffer overflow)

3



Usual control flow transfers



System calls

Multiplexer

Linux FreeRTOS

Shell

asks to open a file

Multiplexer

Linux FreeRTOS

Shell

asks to open a file file is opened

4



System calls

Multiplexer

Linux FreeRTOS

Shell

asks to open a file

Multiplexer

Linux FreeRTOS

Shell

asks to open a file file is opened

4



Signal sending

Multiplexer

Linux FreeRTOS

Shell

sends a SIGINT

Multiplexer

Linux FreeRTOS

Shell

sends a SIGINT calls exit()

5



Signal sending

Multiplexer

Linux FreeRTOS

Shell

sends a SIGINT

Multiplexer

Linux FreeRTOS

Shell

sends a SIGINT calls exit()

5



A versatile context switching

service



Versatile context switching service

The service unifies all the previously showed control flow transfers

and was designed to reduce the isolation proof.

Allows to save your own CPU state before transfering the control flow,

and restore CPU states from the target

6



A virtualization of the IDT

Per partition structure holding CPU state pointers

Accessible to userland code.

7



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

YY

CPU state
Callee’s stored context

Y

8



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

YY

CPU state
Callee’s stored context

Y

8



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

YY

CPU state
Callee’s stored context

Y

8



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

Y

Y

CPU state
Callee’s stored context

Y

8



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

Y

Y

CPU state
Callee’s stored context

Y

8



Service illustration

VIDT

Callee’s memory

VIDT

Caller’s memory

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

X

CPU state
Caller’s frozen context

YY

CPU state
Callee’s stored context

Y

8



About the proof

Unification eases the proof

Isolation proof is almost done, we expect no significant obstacles on the

way.

Our intention is to prove the functional correctness of the function, but

that has not started yet.

9



Methodology

The service was written in Gallina (with imperative style), uses a shallow

embedding to produce C code.

10



Some figures

• Service ˜340 LoC

• Initial isolation proof ˜1800 LoP

• (about 80% of the proof uses lemmas already proven for our project)

• Initial isolation proof ˜3 weeks

11



Questions?

11



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory
Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory

Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory

Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory
Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory
Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory
Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



Memory Partitioning

Multiplexer

Linux FreeRTOS

Shell

Multiplexer

Linux FreeRTOS

Shell

Root partition

Has access to the whole memory
Multiplexer

Linux FreeRTOS

Shell

Root partition

Child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Another child partition

Created from the memory

of the root partition

Multiplexer

Linux FreeRTOS

Shell

Root partition

Parent of both process partitions

Still has access to the memory

shared to its children

Multiplexer

Linux FreeRTOS

Shell

Root partition

Children can’t access the memory

that wasn’t shared with them

Multiplexer

Linux FreeRTOS

Shell

A child can’t access the memory of

another (the shared memory is disjoint)

Root partition



What to do with hardware interrupts ?

Usually the kernel configures the IDT.

IDT

...

Kernel

No multiplexer - Pip can’t handle the interrupts

IDT

...

Pip

Kernel priviledges

User priviledges

Multiplexer



What to do with hardware interrupts ?

Usually the kernel configures the IDT.

IDT

...

Kernel

No multiplexer - Pip can’t handle the interrupts

IDT

...

Pip

Kernel priviledges

User priviledges

Multiplexer



Interrupt Descriptor Table and partitions

We can’t let partitions configure the IDT at will.

• they could bypass the kernel

• unique handler per interrupt



Configuring the IDT

No multiplexer - Pip can’t handle the interrupts

IDT

...

Pip

Kernel priviledges

User priviledges

Multiplexer


	Pip's overview
	Usual control flow transfers
	A versatile context switching service
	Appendix

