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Pip’s overview



A minimalist kernel

Designed to provide formally proven memory isolation to applications.
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Stakes of context switching

Usual software attacks target the control flow (e.g. buffer overflow)
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Usual control flow transfers
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A versatile context switching

service



Versatile context switching service

The service unifies all the previously showed control flow transfers

and was designed to reduce the isolation proof.

Allows to save your own CPU state before transfering the control flow,

and restore CPU states from the target
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A virtualization of the IDT

Per partition structure holding CPU state pointers

Accessible to userland code.
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About the proof

Unification eases the proof

Isolation proof is almost done, we expect no significant obstacles on the

way.

Our intention is to prove the functional correctness of the function, but

that has not started yet.

9



Methodology

The service was written in Gallina (with imperative style), uses a shallow

embedding to produce C code.

10



Some figures

• Service ˜340 LoC

• Initial isolation proof ˜1800 LoP

• (about 80% of the proof uses lemmas already proven for our project)

• Initial isolation proof ˜3 weeks
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Questions?
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Interrupt Descriptor Table and partitions

We can’t let partitions configure the IDT at will.

• they could bypass the kernel

• unique handler per interrupt



Configuring the IDT
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